3.613 \(\int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx\)

Optimal. Leaf size=172 \[ -\frac {2 b^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a+b)}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \left (a^2+3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^3 d}+\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}} \]

[Out]

2/3*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)-2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+
1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^2/d+2/3*(a^2+3*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d
*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a^3/d-2*b^3*(cos(1/2*d*x+1/2
*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*a/(a+b),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(
1/2)/a^3/(a+b)/d

________________________________________________________________________________________

Rubi [A]  time = 0.37, antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3853, 4106, 3849, 2805, 3787, 3771, 2639, 2641} \[ \frac {2 \left (a^2+3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 a^3 d}-\frac {2 b^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a^3 d (a+b)}-\frac {2 b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[1/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])),x]

[Out]

(-2*b*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^2*d) + (2*(a^2 + 3*b^2)*Sqrt[Cos[c +
 d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a^3*d) - (2*b^3*Sqrt[Cos[c + d*x]]*EllipticPi[(2*a)/(a
 + b), (c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a^3*(a + b)*d) + (2*Sin[c + d*x])/(3*a*d*Sqrt[Sec[c + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3787

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3849

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]], Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d
, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3853

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(Cot[e + f*
x]*(d*Csc[e + f*x])^n)/(a*f*n), x] - Dist[1/(a*d*n), Int[((d*Csc[e + f*x])^(n + 1)*Simp[b*n - a*(n + 1)*Csc[e
+ f*x] - b*(n + 1)*Csc[e + f*x]^2, x])/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 -
b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]

Rule 4106

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Dist[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2), Int[(d*Csc[
e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Dist[1/a^2, Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e +
 f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x) (a+b \sec (c+d x))} \, dx &=\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}+\frac {2 \int \frac {-\frac {3 b}{2}+\frac {1}{2} a \sec (c+d x)+\frac {1}{2} b \sec ^2(c+d x)}{\sqrt {\sec (c+d x)} (a+b \sec (c+d x))} \, dx}{3 a}\\ &=\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}+\frac {2 \int \frac {-\frac {3 a b}{2}-\left (-\frac {a^2}{2}-\frac {3 b^2}{2}\right ) \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{3 a^3}-\frac {b^3 \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{a+b \sec (c+d x)} \, dx}{a^3}\\ &=\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {b \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{a^2}+\frac {\left (a^2+3 b^2\right ) \int \sqrt {\sec (c+d x)} \, dx}{3 a^3}-\frac {\left (b^3 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^3}\\ &=-\frac {2 b^3 \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^3 (a+b) d}+\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}-\frac {\left (b \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{a^2}+\frac {\left (\left (a^2+3 b^2\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{3 a^3}\\ &=-\frac {2 b \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 \left (a^2+3 b^2\right ) \sqrt {\cos (c+d x)} F\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{3 a^3 d}-\frac {2 b^3 \sqrt {\cos (c+d x)} \Pi \left (\frac {2 a}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^3 (a+b) d}+\frac {2 \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 7.13, size = 194, normalized size = 1.13 \[ -\frac {\cot (c+d x) \left (-a^2 \sqrt {\sec (c+d x)}+a^2 \cos (3 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)-12 b^2 \sqrt {-\tan ^2(c+d x)} \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )+6 a b \sec ^{\frac {3}{2}}(c+d x)-6 a b \cos (2 (c+d x)) \sec ^{\frac {3}{2}}(c+d x)-4 a (a-3 b) \sqrt {-\tan ^2(c+d x)} F\left (\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )-12 a b \sqrt {-\tan ^2(c+d x)} E\left (\left .\sin ^{-1}\left (\sqrt {\sec (c+d x)}\right )\right |-1\right )\right )}{6 a^3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Sec[c + d*x]^(3/2)*(a + b*Sec[c + d*x])),x]

[Out]

-1/6*(Cot[c + d*x]*(-(a^2*Sqrt[Sec[c + d*x]]) + 6*a*b*Sec[c + d*x]^(3/2) - 6*a*b*Cos[2*(c + d*x)]*Sec[c + d*x]
^(3/2) + a^2*Cos[3*(c + d*x)]*Sec[c + d*x]^(3/2) - 12*a*b*EllipticE[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[
c + d*x]^2] - 4*a*(a - 3*b)*EllipticF[ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2] - 12*b^2*EllipticP
i[-(b/a), ArcSin[Sqrt[Sec[c + d*x]]], -1]*Sqrt[-Tan[c + d*x]^2]))/(a^3*d)

________________________________________________________________________________________

fricas [F]  time = 69.79, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {\sec \left (d x + c\right )}}{b \sec \left (d x + c\right )^{3} + a \sec \left (d x + c\right )^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

integral(sqrt(sec(d*x + c))/(b*sec(d*x + c)^3 + a*sec(d*x + c)^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate(1/((b*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 4.48, size = 516, normalized size = 3.00 \[ -\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\left (4 a^{3}-4 a^{2} b \right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-2 a^{3}+2 a^{2} b \right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-\sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b +3 b^{2} a \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}+3 a^{2} b \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a \,b^{2}+3 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticPi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 a}{a -b}, \sqrt {2}\right )\right )}{3 a^{3} \left (a -b \right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((4*a^3-4*a^2*b)*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1
/2*c)^4+(-2*a^3+2*a^2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c
)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b+3*b^2*a*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2
*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)
^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^3+3*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-
1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+3*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/
2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2)))/a^3/(a-b)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^
(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sec \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)^(3/2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate(1/((b*sec(d*x + c) + a)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{\left (a+\frac {b}{\cos \left (c+d\,x\right )}\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b/cos(c + d*x))*(1/cos(c + d*x))^(3/2)),x)

[Out]

int(1/((a + b/cos(c + d*x))*(1/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sec {\left (c + d x \right )}\right ) \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/sec(d*x+c)**(3/2)/(a+b*sec(d*x+c)),x)

[Out]

Integral(1/((a + b*sec(c + d*x))*sec(c + d*x)**(3/2)), x)

________________________________________________________________________________________